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Further Comments on “ Ihtegration Method of
Measuring Q of the Microwave Resonators”

P. L. OVERFELT anp D. J. WHITE
In reply to our comments [1] concerning his paper,! 1. Kneppo
showed an exact integration of the expression

(1)

between the limits w, and w, by the substitution of variables,
X =w/w, — wy/w, and a simplifying choice of limits symmetrical
in x

P(w) =Py [1+ 03 (w/wy—wo/0)]

= [7P(0)do = PuwyQ; ! tan (Qreneg ). (2)

!
Limits symmetrical about x = 0 amount to the condition
(3)

and when this relation holds, (2) is exact as may be verified by
substituting (3) into the general expression for I, regardless of
integration limits

— .2
Wwy = Wy

Pyoy -1 wz(wg_w%)_wl(w%—w%)
I=
35, | @0 woQ; (02— 0 )( @2 - @) 0F + w0y
-2 1 In (‘*% + “’%)QL + ""2“’0\/EI
407 -1 (w(2>+w%)QL‘wz‘°o‘/4Qi-_l

. (‘*’g'*'w%)QL_wl“’ov“Qi_l

(4
(wg + w%) Q.+ w1w01/4\Qi -1
and using the identity
2
2tan~'a = tan~ 14— (5)
1-a?
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We had assumed [1] integration limits symmetrical in w,
W) =Wy~ w /2

Wy =wy+w /2 (6)
rather than x, but this does not account for the difference
between our results and Kneppo’s for typical microwave cavities.
Unfortunately, (7) in [1] omitted the square on @, in the
denominator of the tan~! term, this equation being otherwise
identical to (4) of this note. Thus, our approximations for the
case Q; > 1, w, > w, were in error. When (6) is substituted in
(4), given these conditions, Kneppo’s (2) results.
It follows that (8) and (9) in our comments [1] are in error and
that (10) should read
I=2nPyAftan~1 k.

(7

In any case, the method of integrating (1) between general limits
is of much interest, and (4) does allow asymmetrical limits for
experimental integration. For example, integrating between the
3-dB and the resonant frequencies (setting w; or w, equal to w;)
gives
I aAf
P 4

(®)

where Af is the 3-dB bandwidth. This expression should allow a
check on the symmetry of the resonance curve and, hence, show
how good a description of the cavity resonance (1) actually is.
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Comments on “New Narrow-Band Dual-Mode
Bandstop Waveguide Filters”

RICHARD V. SNYDER, SENIOR MEMBER, IEEE

I have read the above paper! with interest, but find some
possible discrepancies between the data presented in Fig. 4 and
the data presented in Fig. 6. It seems to me that the data in Fig. 4
is probably accurate, reflecting as it does the rejection obtainable
through a single pair of ports coupling to a dominant mode
propagating waveguide. No matter how the multiple pole filter is
synthesized in the concept discussed by the authors, the shunt
coupled bandpass filter is coupled only by a pair of couplings to
the main line. Thus, the limitation on the depth of the obtainable
rejection is determined by two factors: 1) orthogonality of the
two coupling irises, and 2) return loss of the two coupling irises.

The data of Fig. 6 implies an input return loss for the bandpass
filter and a value for the coupling iris isolation of over 50 dB,
values which do not seem very likely. The data of Fig. 4 shows
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values of approximately 18 dB, a rather reasonable number. I
would ask the authors to comment on the method used to avoid
direct crosstalk from the input to the output, (crosstalk would
bypass the complementary bandpass filter) in the data of Fig. 6.

To achieve rejection values of 50 to 60 dB normally requires
coupling of each resonant section to a different point along the
main line with the distance between the coupling points being
selected for proper phase cancellation. Such a technique was
presented in [2].

Reply’? by J.-R. Qian and W.-C. Zhuang’

The object of our paper [1] is to achieve high rejection values
(over 40 dB) in the stopband for a bandstop waveguide filter
without requiring many coupling irises along the main waveguide.
It is just the distinguished feature against others.

We agree with Mr. Snyder that the obtainable rejection for our
filters is determined by the return loss and the orthogonality of
the two coupling irises.

The return loss or the reflection from the bandstop filters can
be divided into two parts according to the following substitution.
When the first and last equations of (3) in [1] are inserted into (8)

in [1], it is easy to find that the transmission and reflection -

coefficients for the bandstop filters shown in Fig. 2(b) in [1] are
v =1=(jM /)i —(M;,41/)1,

r'= (Mg /e0) i —(M]ys1/0) 11 ey

In the case of w = @), the vector diagram for ¢” and r’ is shown
in Fig. 1. In order to make the resultant of the two components
of r’ in (1) equal to a unit vector and ¢’ = 0, these two compo-
nents must be 90° out of phase with each other; therefore /] and
ij, are in phase at frequencies w = «j,. At the frequencies other
than poles in the stopband, i/ and i/ are almost in phase, so that
'=0 and ' =1. At the frequencies in the passbands of the
filters, # and i/, are almost 90° out of phase with each other, so
that the two components of r’ cancel out, and then the resultant
#’ is restricted below a prescribed level.

This is the physical reason why there are poles and zeros in the
frequency bands. So the return loss or the reflections of the two
coupling irises is not a problem in our filters.

As Mr. Snyder mentioned, the crosstalk may have happened
because of imperfections in orthogonality of the two irises. The
imperfections cause direct coupling from the input of the band-
stop filter to the output. This coupling effect can be taken into
account by a bypassing reactance jX,, which, in parallel to the
mutual inductance M{;, directly connects the source e, to the
load Rg.

Taking account of introducing X, into Fig. 2(b) in [1], the loop
equations for the bandstop filters can be rewritten as (3) in [1],*
but the element Z in the second column should be in place of
(Z — jM{/X,). This means that the i{ loop is detuned and can
be easily compensated by adjusting the tuning screw of the first
cavity.
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Vector diagram for " and r'.

Therefore, as long as X, > M{;, the insertion of the X, has no
effect on the accuracy of the theory described in [1], and this has
been confirmed by the experiment mentioned before [1].

Even though the high rejection values in the stopbands are
obtainable theoretically, the experimental results shown in Fig. 6
in [1] could not be obtained without making the auxiliary experi-
ments with several steps, which ensure the expected values of the
parameters R, M’s to be carried out and the resonant frequen-
cies of each cavity to be identical.
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Comment on “Fast-Fourier-Transform Method for
Calculation of SAR Distributions in Finely
Discretized Inhomogeneous Models
of Biological Bodies”

ALLEN TAFLOVE, SENIOR MEMBER, IEEE, AND
KORADA R. UMASHANKAR, SENIOR MEMBER, IEEE

In the above paper,! Borup and Gandhi state in their Section
IV that, in addition to their FFT method, “Thus far, the only
technique available to compute SAR distributions for models of
man is the method of moments (MOM).” In this letter, we would
like to point out that there exists a viable alternative numerical
approach which has been the subject of intense research and
numerous publications over the past ten years. In fact, some nine
years ago, an article in the same MTT TRANSACTIONS [1] dis-
cussed the application of this approach to a three-dimensional
tissue geometry having 14 079 space cells for purposes of comput-
ing the SAR distribution as well as the induced temperatures.
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